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Advanced Inference: Multiple Hypothesis Testing

So far, we have gone over mainly what we call “single hypothesis testing.” That is,
our hypotheses have usually involve a single parameter that is being tested.

Examples:

• Testing the null hypothesis H0 : β3 = 0 against an alternative H1 : β3 6= 0.

• Testing the null hypothesis H0 : λ ≤ 0 against an alternative H1 : λ > 0,
where λ = β2 + 3β3.

◦ Notice that while λ is a linear combination of parameters, we are still only
testing the linear combination, not the individual components.

◦ Testing λ = 0 is different than testing that both β2 = 0 and β3 = 0.
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Advanced Inference: Multiple Hypothesis Testing

However, often in multiple hypothesis testing we would like to test multiple
hypotheses at the same time. Consider the multiple linear regression model

Y = β0 + β1X1 + · · ·+ βpXp + ε.

Now, we will consider testing multiple conjectures about the coefficients.

• Will limit ourselves to “two-sided” alternatives, that is we will only test
equality restrictions.

Before:
H0 : β1 = 0 vs. H1 : β1 6= 0.

• Since null hypothesis involves multiple restrictions, this is called a joint
hypothesis test

• Alternative is always two sided. Won’t consider test something like

H0 : β1 ≤ β2 and β3 ≥ 0 vs. H1 : β1 > β2 or β3 < 0.
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Advanced Inference: Examples

Example (Demand Estimation)

A hamburger restaurant considers the following model for sales:

Sales = β0 + β1Price + β3Advert + β4Advert2 + ε.

We want to test whether advertising has any effect on sales. In this context, this
means testing the joint hypothesis:

H0 : β3 = β4 = 0 vs. H1 : β3 6= 0 or β3 6= 0.

Notice the difference between running this test and testing something like

H0 : β3 + 2β4 = 0 vs. H1 : β3 + 2β4 6= 0.
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Advanced Inference: Examples

Example (Returns to Education and Experience)

Suppose we estimate the model:

ln(Wage) = β0 + β1Edu + β2Exper + β3Exper2 + β4Exper · Edu + ε.

We want to test whether experience has any effect on wages, which is equivalent
to testing

H0 : β2 = β3 = β4 = 0 vs. H1 : β2 6= or β3 6= 0 or β4 6= 0.

Alternatively, if we wanted to test whether education has any effect on wages we
would test:

H0 : β1 = β4 = 0 vs. H1 : β1 6= 0 or β4 6= 0.
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Advanced Inference: Examples

Example (Infrastructure)

Suppose LA metro wants to understand whether the number of subway rides is
affected by the price of alternative modes of transportation. They estimate the
model:

No. of Subway Rides = β0 + β1Pricebus + β2Pricegas + β3Priceuber + ε.

The null and alternative hypotheses for whether the prices of substitutes matter are
given:

H0 : β2 = β3 = β4 = 0 vs. H1 : β2 6= 0 or β3 6= 0 or β4 6= 0.
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Advance Inference: Examples

Example (Model Selection)

Suppose we have estimated the model

Anxiety = β0 + β1Classes + ε.

We are considering adding information on number of energy drinks and the number
of hours of sleep one gets to this model. That is, we are considering estimating the
model

Anxiety = β0 + β1Classes + β2Energy Drinks + β3Sleep + ε.

We want to know if adding these new covariates adds any explanatory power to
our model. This is equivalent to testing

H0 : β2 = β3 = 0 vs. H1 : β2 6= 0 or β3 6= 0.
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Advanced Inference: Testing Procedure

Notice that in all of these we want to test multiple equality restrictions. How do
we go about this?

Our general approach for hypothesis testing has been as follows:

1. Step 1: Formally state the null and the alternative hypothesis

◦ Steps that follow depend on what the alternative is

2. Step 2: Look at the data and see whether there is evidence against the null
hypothesis

◦ Compute the p-value. Does the data look unusual under the assumption that
H0 holds?

3. Step 3: Based on the evidence, decide whether or not to reject H0.

◦ Reject if the p-value is less than α.
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Advanced Inference: Testing Procedure

We have now set up our null and alternative hypothesis. We need to now think
about what we would expect the distribution of our data to look like under our null
hypothesis. To do so, we will define the restricted and the unrestricted models.

• Restricted Model: Incorporates the null hypothesis restrictions on the model.

• Unrestricted Model: More general model specified by the
alternative hypothesis.

Key Idea: If the null hypothesis is true the unrestricted model shouldn’t give a
large improvement over the restricted model.

• In any finite sample, the unrestricted model will always give at least a slightly
better fit than the restricted model. Under the null hypothesis this
improvement shouldn’t be very large.

Let’s go over some examples of restricted and unrestricted models.
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Advanced Inference: Testing Procedure

Example (Demand Estimation)

A hamburger restaurant considers the following model to forecast sales:

Sales = β0 + β1Price + β2Advert + β3Advert2 + ε.

As before we want to test the null hypothesis that advertising has no effect on
sales (H0 : β2 = β3 = 0). The restricted model is

Sales = β0 + β1Price + ε.

The unrestricted model is the full model:

Sales = β0 + β1Price + β2Advert + β3Advert2 + ε.
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Advanced Inference: Testing Procedure

Example (Returns to Education and Experience)

Suppose we are considering the model:

ln(Wage) = β0 + β1Edu + β2Exper + β3Exper2 + β4Exper · Edu + ε.

The null hypothesis is that experience has no effect on wages
(H0 : β2 = β3 = β4 = 0). The restricted model is:

ln(Wage) = β0 + β1Edu + ε.

In constrast, the unrestricted model is the full model:

ln(Wage) = β0 + β1Edu + β3Exper + β4Exper2 + β4Exper · Edu + ε.
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Advanced Inference: Testing Procedure

Example (Returns to education and experience)

Suppose we are considering the model:

ln(Wage) = β0 + β1Edu + β2Exper + ε.

We want to test the null hypothesis that returns to experience are the same as
returns to education (h0 : β1 = β2). The restricted model in this case would be

ln(Wage) = β0 + β1(Edu + Exper) + ε.

Whereas the unrestricted model would be

ln(Wage) = β0 + β1Edu + β2Exper + ε.
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Advanced Inference: Testing Procedure

We estimate the parameters of the restricted model and the unrestricted model
just as before. The restricted model is estimated

β̂R
0 , . . . , β̂

R
p = arg min

b0,...,bp satisfy H0

1

n

n∑
i=1

(Yi − b0 − b1X1,i − · · · − bpXp,i)
2.

The unrestricted model is estimated

β̂R
0 , . . . , β̂

R
p = arg min

b0,...,bp

1

n

n∑
i=1

(Yi − b0 − b1X1,i − · · · − bpXp,i)
2.
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Advanced Inference: Testing Procedure

Example (Returns to Education and Experience)

Suppose we are considering the model:

ln(Wage) = β0 + β1Edu + β2Exper + β3Exper2 + ε.

The null hypothesis is that experience has no effect on wages (H0 : β2 = β3 = 0).
The restricted model is:

ln(Wage) = β0 + β1Edu + ε.

This can be estimated by finding

β̂R
0 , β̂

R
1 = arg min

b0,b1,b2=b3=0

1

n

n∑
i=1

(
Yi − b0 − b1Edui − b2Experi − b3Exper2i

)2
= arg min

b0,b1

1

n

n∑
i=1

(Yi − b0 − b1Edui)
2 .

Note: This is the method of estimating the restricted model that we are used to.
Nothing has changed. The unrestricted model is estimated as before.
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Advanced Inference: Testing Procedure

Example (Returns to Education and Experience)

Suppose we are considering the model:

ln(Wage) = β0 + β1Edu + β2Exper + ε.

We want to test the null hypothesis that returns to experience are the same as
returns to education (H0 : β1 = β2). The restricted model is:

ln(Wage) = β0 + β1(Edu + Exper) + ε.

To estimate this model we take

β̂R
0 , β̂

R
1 = arg min

b0,b1

1

n

n∑
i=1

(
ln(Wagei)− b0 − b1(Edui + Experi)

)2
.
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Advanced Inference: Testing Procedure

After fitting our restricted model and our unrestricted model, we get two different
measures of fit:

• SSER: The sum of squared errors from our restricted model

SSER =
n∑

i=1

(Yi − Ŷ R
i )2.

• SSEU: The sum of squared errors from our unrestricted model

SSEU =
n∑

i=1

(Yi − Ŷ U
i )2.

Because the unrestricted model has fewer restrictions on the parameter estimates
than the restricted model, we will always have that SSEU ≤ SSER, that is the
unrestricted model will always have a lower SSE than the restricted model.

• Key Idea: If the null hypothesis restrictions are true SSEU will not be too
much smaller than SSER.

• If the null hypothesis is false, than SSER should be much larger than SSEU

since we are imposing false restrictions
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i )2.

• SSEU: The sum of squared errors from our unrestricted model

SSEU =
n∑

i=1

(Yi − Ŷ U
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Advanced Inference: Testing Procedure

Key Idea:

• If the null hypothesis restrictions are true SSEU will not be too much smaller
than SSER.

• If the null hypothesis is false, than SSER should be much larger than SSEU

since we are imposing false restrictions.

Testing Procedure: Reject if SSER − SSEU is “sufficiently” large.
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Advanced Inference: The F-Statistic

Formally, we will compare our SSER to our SSEU by constructing the following
F-statistic.

F ∗ =
(SSER − SSEU)/J

SSEU/(n− p− 1)
.

where

• n is the sample size

• J is the number of restrictions in H0.

◦ Think “count the equality signs”

• p+ 1 is the number of parameters in the unrestricted model (p slope
parameters plus an intercept).
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Advanced Inference: The F-Statistic

Under the null hypothesis that the restrictions hold, the F-statistic is distributed

F ∗ ∼ F (J, n− p− 1).

The p-value is then computed as probability that a random variable with this
distribution would take on a value larger than our observed test statistic F ∗.
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Under the null hypothesis that the restrictions hold, the F-statistic is distributed

F ∗ ∼ F (J, n− p− 1).

The p-value is then computed as probability that a random variable with this
distribution would take on a value larger than our observed test statistic F ∗.

• We can calculate the probability (under the null hypothesis) that a random
variable distributed F (J, n− p− 1) takes on a value less than or equal to a
constant c using the “pf” command in R:

Pr
(
F (J, n− p− 1) ≤ c

)
= pf(c, J, n− p− 1).
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Advanced Inference: The F-Statistic

Under the null hypothesis that the restrictions hold, the F-statistic is distributed

F ∗ ∼ F (J, n− p− 1).

The p-value is then computed as probability that a random variable with this
distribution would take on a value larger than our observed test statistic F ∗.

The p-value is the probability that we would obtain our observed value of F ∗ or
something even larger (an even larger deviation of SSEU from SSER) under the
null. So, the p-value for this test can be computed:

p = Pr
(
F (J, n− p− 1) > F ∗) = 1− pf(F ∗, J, n− p− 1).

As before, we reject if this p-value is smaller than some prespecified level p < α.
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Advanced Inference: The F-Statistic

Let’s see how this works in practice.

Example (Demand Estimation)

A hamburger restaurant considers the following model for sales:

Sales = β0 + β1Price + β2Advert + β3Advert2 + ε.

We want to test the null hypothesis that advertising has no effect on sales
(H0 : β2 = β3 = 0) against the alternative that it does (H1 : β2 6= 0 or β3 6= 0).

After collecting a sample of size n = 75 and estimating the restricted model

Sales = β0 + β1Price + ε,

we find that SSER = 1896.391. Estimating the unrestricted model gives us that
SSEU = 1531.084. Should we reject our null hypothesis at level α = 0.05?
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Advanced Inference: The F-Statistic

Example (Demand Estimation)

We find that SSER = 1896.391 and SSEU = 1531.084. Should we reject our null
hypothesis at level α = 0.05?

Let’s construct our F-Statistic.
• We know that n = 75.
• The full model has a total of p+ 1 = 3 + 1 = 4 parameters.
• Our null hypothesis is H0 : β2 = β3 = 0, for a total of J = 2 restrictions

So we can construct our test statistic:

F ∗ =
(SSER − SSEU)/J

SSEU/(n− p− 1)
=

(1892.391− 1531.084)/2

1531.084/71
≈ 8.377.
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Advanced Inference: The F-Statistic

Example (Demand Estimation)

We compute the p-value using the F (J, n− p− 1) = F (2, 71) distribution:

p = Pr(F (2, 71) > F ∗) = Pr
(
F (2, 71) > 8.3777

)
= 1− Pr

(
F (2, 71) ≤ 8.3777

)
= 1− pf(8.377, 2, 71)

= 0.0005.

Since p < α = 0.05 we reject the null hypothesis and conclude that advertising
does have a significant effect on sales.
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Advanced Inference: The F-Statistic

Example (Model Significance)

Consider the model
Y = β0 + β1X1 + · · ·+ βpXp + ε.

A classical example of an F-test is testing for the significance of the model.

• This is a test for whether any of our regressors X1, . . . , Xp is statistically
significant.

• Formally the hypotheses we are interested in are:

H0 : β1 = . . . βp = 0 vs. H1 : βj 6= 0 for some 1 ≤ j ≤ p.

• Intuitively, we are just testing whether our model does better at predicting Y
than a constant.

• This is the F-statistic that R reports in a regression summary.
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Advanced Inference: The F-Statistic

Example (Model Significance)

Because the null hypothesis is so restrictive, the formulas simplify considerably.
The restricted model sets all slope parameters to zero and so just contains a
constant:

Y = β0 + ε =⇒ β̂R
0 = arg min

b0

1

n

n∑
i=1

(Yi − b0)2 =⇒ β̂R
0 = Ȳ .

This means that SSER =
∑n

i=1(Yi − Ȳ )2 = SST. The unrestricted model includes
all slope parameters estimated normally so SSEU = SSE.
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Advanced Inference: The F-Statistic

Example (Model Significance)

Recall from our discussion of R2 that we have the following decomposition:

n∑
i=1

(Yi − Ȳ )2︸ ︷︷ ︸
SST

=

n∑
i=1

(Yi − Ŷi)
2

︸ ︷︷ ︸
SSR

+

n∑
i=1

ε̂2i︸ ︷︷ ︸
SSE

where Ŷi is the prediction from the unrestricted model and ε̂i is the estimated
residual from the unrestricted model. Using this, and since R2 = SSR/SST we can

simplify the F-statistic:

F ∗ =
(SSER − SSEU)/J

SSEU/(n− p− 1)
=

(SST− SSE)/p

SSE/(n− p− 1)
=

R2/p

(1−R2)/(n− p− 1)
.

Key Idea: The overall significance of the model is determined by the overall fit of
the model!
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The F-Test: Questions

Questions?
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The F-Test: Why Impose Restrictions

Suppose we are just interested in prediction. A natural question here is: why
bother imposing restrictions? Why not just estimate all parameters in the
unrestricted model?

• Estimating more parameters increases the variance of each of our estimates.

• Estimating too many parameters can decrease the interpretability of our
model and lead to overfitting.

However, as we will now see, imposing too many restrictions can lead to problems
as well.
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Model Selection and Omitted Variables Bias

For the most part in this lecture, we have taken as a given that we have some
model:

Y = β0 + β1X1 + · · ·+ βpXp + ε.

However, in practice, we are the ones that must select which variables to include in
our model:

• Which of the available data we should use as regressors?

• Should we include transformations of our regressors?

• What are the trade-offs between including and excluding a variable?

Selecting the right model is a bit of an art, there is no easy rule/recipe to follow.
Good model selection combines statistical reasoning as well as knowledge of the
problem/setting at hand.
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Omitted Variables Bias

We have covered what happens when we include irrelevant variables. Now let’s
consider what happens when we exclude a relevant variable.

Recall in the beginning of class we were interested in the relationship between
energy drinks consumed and anxiety levels. We looked at a study that (essentially)
estimated the following model

Anxiety = β0 + β1Energy Drinks + ε

and found that β1 > 0. We reasoned that this positive association may be due to
the fact that people who drink more energy drinks may be taking more classes, and
it is the classes that are driving anxiety levels rather than the energy drinks. That
is, if we were to instead consider the model

Anxiety = β◦
0 + β◦

1Energy Drinks + β◦
2Classes + ε◦,

we would find a value of β◦
1 that would be much smaller than our β1 from before.

This difference β1 − β◦
1 is called an omitted variables bias.
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Omitted Variables Bias

Let’s suppose we have access to two possible explanatory variables X1, X2 and we
consider two models. The first model contains only X1

Y = β0 + β1X1 + ε.

The second model contains both X1 and X2

Y = β◦
0 + β◦

1X1 + β◦
2X2 + ε◦.

Question: What is the relationship between β◦
1 and β1?

• In other words, how does the observed relationship between Y and X1 change
when we account for X2?

By performing some algebra, we can find that

β1 = β◦
1 + β◦

2
Cov(X1, X2)

Var(X1)︸ ︷︷ ︸
Omitted Variables Bias

.
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Omitted Variables Bias

The omitted variables bias from excluding X2 in our regression model is given:

β◦
2

Cov(X1, X2)

Var(X1)
.

Some Intuition:

• If X2 has a positive relationship with the outcome Y and X1 and X2 are
positively related, then we will have a postive omitted variables bias, β1 > β◦

1 .

◦ Classes and Anxiety levels have a positive relationship, Classes and Energy
Drink consumption have a positive relationship.

◦ It will look like energy drink consumption has a stronger positive relationship
with anxiety level than it “truly” does since people drinking more energy drinks
are likely to be taking more classes.
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Omitted Variables Bias

The omitted variables bias from excluding X2 in our regression model is given:

β◦
2

Cov(X1, X2)

Var(X1)
.

Some Intuition:

• If X2 has a negative relationship with the outcome and X1 and X2 are
positively related then we will have a negative omitted variables bias, β1 < β◦

1 .

◦ Suppose we are interested in relationship between anxiety levels, taking Advil
PM, and amount of sleep a student is getting. We believe that more sleep helps
lower anxiety levels so β◦

2 < 0 and that taking Advil PM induces sleep so that
Cov(X1, X2) > 0.

◦ If we were to just regress anxiety levels on whether or not someone is taking
Advil PM, we may get a fairly negative value for β1 and conclude that Advil
PM appears to reduce anxiety levels.

◦ But, this negative β1 value is probably due to omitting the sleep variable. Once
we include it, it is more likely that we get β◦

1 ≈ 0.
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Omitted Variables Bias

The omitted variables bias from excluding X2 in our regression model is given:

β◦
2

Cov(X1, X2)

Var(X1)
.

Some Intuition:

Can keep reasoning through all the different cases, and will do so more in
homework. But important to note that it is rare that β1 = β◦

1 .

• Would need either β◦
2 = 0, X2 has no effect on the outcome Y or,

• Cov(X1, X2) = 0, X2 has no (linear) relationship with X1.
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Omitted Variables Bias: Questions?

Questions?
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Modeling: Indicator Variables

The final modeling technique we will talk about is using indicator or “Dummy”
variables.

Definition (Indicator Variables)

A indicator or “dummy” variable D is a variable D is a variable that only takes on
two values. Usually

D ∈ {0, 1}.

Question: Why would this sort of variable be useful?

• Can turn a categorical variable into a numeric variable

◦ Ex. create a dummy variable that is equal to one if a persons favorite color is
“blue”

• Helpful for letting parameters of regression be individual to certain subgroups:

◦ Can multiply parameters by dummy variables

• Deal with special effects for certain thresholds:

◦ College degree vs. no college degree

Let’s see some examples of this

Manu Navjeevan (UCLA) Econ 103: Multiple Linear Regression II 36 / 45



Modeling: Indicator Variables

The final modeling technique we will talk about is using indicator or “Dummy”
variables.

Definition (Indicator Variables)

A indicator or “dummy” variable D is a variable D is a variable that only takes on
two values. Usually

D ∈ {0, 1}.

Question: Why would this sort of variable be useful?

• Can turn a categorical variable into a numeric variable

◦ Ex. create a dummy variable that is equal to one if a persons favorite color is
“blue”

• Helpful for letting parameters of regression be individual to certain subgroups:

◦ Can multiply parameters by dummy variables

• Deal with special effects for certain thresholds:

◦ College degree vs. no college degree

Let’s see some examples of this

Manu Navjeevan (UCLA) Econ 103: Multiple Linear Regression II 36 / 45



Modeling: Indicator Variables

The final modeling technique we will talk about is using indicator or “Dummy”
variables.

Definition (Indicator Variables)

A indicator or “dummy” variable D is a variable D is a variable that only takes on
two values. Usually

D ∈ {0, 1}.

Question: Why would this sort of variable be useful?

• Can turn a categorical variable into a numeric variable

◦ Ex. create a dummy variable that is equal to one if a persons favorite color is
“blue”

• Helpful for letting parameters of regression be individual to certain subgroups:

◦ Can multiply parameters by dummy variables

• Deal with special effects for certain thresholds:

◦ College degree vs. no college degree

Let’s see some examples of this

Manu Navjeevan (UCLA) Econ 103: Multiple Linear Regression II 36 / 45



Indicator Variables: Intercept Changes

Example (Home Characteristics)

Suppose we are interested in estimating the sales price for a house. In the past
we’ve estimated:

Price = β0 + β1Sqft + ε.

Problem: There are many qualitative factors that affect the price:
• Is the house close to UCLA?
• Does the house have a pool?

Solution: Model whether the qualitative factor is present by using a dummy
variable!

D =

{
1 if characteristic is present

0 if characteristic is not present
.

For example, let’s let D = 1 if the house is within 5 miles of UCLA and D = 0
otherwise.
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Indicator Variables: Intercept Changes

Example (Home Characteristics)

Let’s let D = 1 if the house is within 5 miles of UCLA and D = 0 otherwise. We
now consider the model

Price = β0 + δD + β2Sqft + ε.

Note: We can now think of δ as the price premium for a house that is close to
UCLA.

P̂rice =

{
(β0 + δ) + β2Sqft if the house is within 5 miles of UCLA

β0 + β2Sqft otherwise
.

This is equivalent to having a different intercept term for houses within 5 miles of
UCLA.
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Indicator Variables: Intercept Changes

Space to draw what this would look like:

Manu Navjeevan (UCLA) Econ 103: Multiple Linear Regression II 39 / 45



Indicator Variables: Intercept Changes

Question: What if instead of letting D = 1 when the house is close to UCLA, we
set:

LD =

{
1 if house is more than 5 miles from UCLA

0 if house is withing 5 miles of UCLA

Note that this is the opposite of what we had before.

Answer: This is perfectly fine, it just changes the interpretation!

Example (Home Characteristics)

If instead of using D we modify the previous regression to be

Price = β0 + δLD + β2Sqft + ε.

Then δ is the price discount for not being close to UCLA (expect δ < 0).

Notes:

• The group corresponding to D = 0 is sometimes called the reference group.

• Be careful not to include both D and LD and a constant in a regression.
Since D = 1−LD, this causes perfect collinearity (rank condition is violated).

Manu Navjeevan (UCLA) Econ 103: Multiple Linear Regression II 40 / 45



Indicator Variables: Intercept Changes

Question: What if instead of letting D = 1 when the house is close to UCLA, we
set:

LD =

{
1 if house is more than 5 miles from UCLA

0 if house is withing 5 miles of UCLA

Note that this is the opposite of what we had before.

Answer: This is perfectly fine, it just changes the interpretation!

Example (Home Characteristics)

If instead of using D we modify the previous regression to be

Price = β0 + δLD + β2Sqft + ε.

Then δ is the price discount for not being close to UCLA (expect δ < 0).

Notes:

• The group corresponding to D = 0 is sometimes called the reference group.

• Be careful not to include both D and LD and a constant in a regression.
Since D = 1−LD, this causes perfect collinearity (rank condition is violated).

Manu Navjeevan (UCLA) Econ 103: Multiple Linear Regression II 40 / 45



Indicator Variables: Slope Changes

Example (Returns to Education)

Suppose we are interested in the relationship between educational attainment and
wages. We could suspect that having a college degree has a particular impact
above and beyond an additional year of education. Following the example above,
we may encode the dummy variable:

D =

{
1 if person has a college degree

0 otherwise

and estimate the model:

ln(Wages) = β0 + δD + β2Edu + ε.

Question: But, what if we believe that an additional year of education after
completing college has a different effect than an additional year of education before
completing college?
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Indicator Variables: Slope Changes

Example (Returns to Education)

Question: What if we believe that an additional year of education after completing
college has a different effect than an additional year of education before completing
college?

In this case, we may want the slope parameter to differ for college
graduates as well. To model this, we can estimate the model:

ln(Wages) = β0 + δD + β2Edu + γD · Edu + ε.

Now we are allowing both the slope and the intercept to change for college
graduates:

Ŷ (Edu = 0)︸ ︷︷ ︸
Intercept

=

{
β0 + δ if college graduate

β0 if not college graduate

and for the slope:

∂Ŷ

∂Edu
=

{
β2 + γ if college graduate

β2 otherwise
.
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∂Ŷ

∂Edu
=

{
β2 + γ if college graduate

β2 otherwise
.

Manu Navjeevan (UCLA) Econ 103: Multiple Linear Regression II 42 / 45



Indicator Variables: Slope Changes

Space to draw what this would look like:
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Indicator Variables: Summary

In summary: Indicator variables can allow for a lot of flexibility in our model!

• Allows for the intercepts and slopes to differ by subgroup

• Can allow us to include qualitative data in our models

• Just have to be a bit careful about collinearity
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Conclusion

Essentially in this lecture, we have considered model selection. There are two
competing risks when doing model selection:

• Including irrelevant variables

◦ Increases the variance of each parameter estimate, risk of overfitting, decreases
interpretability of our model

◦ Can use F-test to check for irrelevant variables

• Excluding relevant variables

◦ Leads to omitted variables bias, interpretation of our model can be incorrect,

◦ Can think through omitted variables bias formula. This formula is not exact
once we consider more variables, but the reasoning is the same. Often useful in
causal inference settings.

There are some statistical procedures that can try to help with model selection.
We have gone over one, looking at the adjusted R2. However, this is a rough
selection critetion and there are more sophisticated ones. If you are interested I can
send some references.
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